Glad I could help a bit.
Another thing about Cobots (or, at least, the ones I've used so far), is that to achieve their Collaborative rating, they are very fussy about their payloads. For example, every Cobot I've used, after a collision fault or a reboot, requires an operator to manually acknowledge that the programmed payload is still attached, and that no external forces are acting on the Cobot (ie, no one is touching it). This is b/c the Cobot must perform a degree of recalibration or checking of its internal torque sensors, which are what detects collisions. This means that these sensors are part of the critical safety chain of the Cobot, and as such no quick/easy bypasses are permitted. For some Cobots, doing an axis calibration may require the robot to point straight up ("candlestick pose") in order to separate gravity effects.
Dressing a Cobot has challenges as well. Thick cables, heavy hoses, spring-loaded retractors -- Cobots cannot tell the difference between these forces and a collision. So dressing needs to be light, neat, and you must avoid motions that pull on the dressing, or might wrap it around the wrist. Sticking to the Cobot's internal power/communications lines is strongly recommended, and you need to design your EOAT accordingly.
Another wrinkle of having the robot's internal sensors be part of the safety chain -- Cobots are less maintainable by end users, in general. So far, I've never seen motor replacement on a Cobot performed by anyone but a certified tech from the robot manufacturer, and some maintenance can only be done by shipping the robot back to the factory. In contrast, replacing motors on Big Iron is usually not a big deal.
One Cobot I worked with was used as a demo model, mounted on a cart... and we found that moving that cart across a bumpy floor would throw the contact sensing so badly out of calibration that it had to be sent back to the factory. A smaller Cobot (10kg payload) came from the manufacturer in a high-strenth carboard "carrying frame", with hand-holes, and the instructions were explicit that simply picking the robot up by hand would void the warranty -- instead, the crate and padding had to be broken down in a specific order, then the robot could only be lifted (by hand) using the cardboard carrying frame (which supported all the axes in their shipping positions), and there were all sorts of warnings about how jostling the robot carelessly could render it useless. Once it was bolted down to its permanent stand, it could take more abuse, but between crate and stand, it was vulnerable.
So: read the instructions completely before opening the crate! Cobots are just easier to break than Big Iron, even the small Big Iron.